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General Rule to experimental data will evidently 
depend upon the accuracy of the experimental data. 
This is a matter for future development and detailed 
study. 

In order to apply the results of this paper to the 
case of one predominant type of anomalous scatterer, 
it is only necessary to know the chemical identity of 
the anomalous scatterer. In the case of more than one 
type of predominant anomalous scatterer, it is also 
necessary to have an estimate of the amount of each 
anomalous scatterer. 

I wish to thank Mr Stephen Brenner for writing 
the appropriate programs and making the computa- 
tions reported here. 

This research was supported in part by USPHS 
grant GM30902. 
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Abstract 

The dynamical three-beam problem in Renninger 
geometry is cast in a pseudo-two-beam formulation 
for the primary OH reflection, with the inverse of the 
excitation error ~L with respect to the third reciprocal- 
lattice point L acting as a perturbation parameter 
for modifying the true two-beam solutions. This 
approach introduces a quasi-universal angular scale 
x for measuring the onset of all three-beam effects, 
and it leads to a first-order solution that preserves all 
features of a two-beam case, but around a shifted 
Lorentz point, and with modified structure factors. 
The modified structure factors, odd in x, cause pro- 
nounced asymmetries in the diffracted intensities on 
both sides of the three-beam point, for Ixl ~ 1. In this 
range of x, the first-order solution provides a simple 
analytic expression for the integrated diffracted 
intensity vs angle, for a sequence of neighboring 
three-beam or higher-order points. This is exemplified 
for the Ge 222 primary reflection. The physics of the 
onset of the three-beam interaction, and the limita- 
tions of the first-order solution are also discussed. 

1. Introduction 

Multiple diffraction of X-rays in crystals has been 
fully described mathematically ever since Ewald's 

0108-7673/84/040379-11501.50 

(1916) dynamical theory. Its prototype, the two-beam 
case, has been exhaustively treated analytically (Laue, 
1960; James, 1963; Batterman & Cole, 1964), and 
exploited quantitatively in applications ranging from 
anomalous transmission (Borrmann, 1950) to inter- 
ferometry (Bonse & Hart, 1965). 

Except in special cases, three-beam or higher inter- 
actions have not been describable by equally simple 
analysis or by general conceptual insights into the 
nature of the normal modes of propagation. While 
full computer-implemented solutions of any specific 
problem exist (e.g. Uebach, 1973; Colella, 1974; 
Kohn, 1979), their conclusions are usually not gen- 
eralizable, unless statistical sampling of the effects of 
altering various parameters is undertaken (Hiimmer 
& Billy, 1982). 

Recent exploration of the fine structure of multiple 
interactions ranges from structure-factor phase 
determination (Post, 1979; Chang, 1982) and surface 
physics (Cowan, Golovchenko & Robbins, 1980) to 
nonlinear couplings to other waves (LeRoux, Colella 
& Bray, 1975; Juretschke & Wasserstein-Robbins, 
1982). Hildebrandt (1982) has reviewed other applica- 
tions. Further work should be stimulated by a descrip- 
tion of multiple diffraction that allows a simple 
mathematical formulation of its basic dynamical 
features, and relies as much as possible on familiar 
concepts. 
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In this paper we propose such a description. It 
concentrates on how the onset of multiple diffraction 
influences the standard two-beam interaction, such 
as should occur in the Renninger geometry, by con- 
structing systematic two-beam solutions perturbed by 
the presence of additional reciprocal-lattice points 
for diffraction near the Ewald sphere. This approach 
clearly identifies the increasing importance of differ- 
ent aspects of mutiple diffraction with the strength 
and order of perturbation. While its solutions cannot 
describe the center of a given n-point region, they 
may suffice for many of the currently accessible 
features of multiple diffraction, given that even for 
modern collimation this central region is too small 
to be resolved. 

The method differs from most analytic treatments 
(e.g. Hildebrandt, 1967; Ewald & Hrno, 1968) by 
approaching an n-beam point from far away, rather 
than using it as a starting point. It is most akin to 
Bethe's (1928) treatment of the influence of weak 
beams in electron diffraction, where his dynamic 
potentials are used as a standard perturbation correc- 
tion. As extended and applied here to X-rays, new 
features emerge that are characteristic of vector fields, 
and emphases and interpretations are shifted. 

Preliminary accounts of our approach have dealt 
with the phase problem (Juretschke, 1982a, b). The 
systematics of the perturbation method outlined there 
is worked out below, and then applied to various 
additional consequences of the first-order theory in 
perfect crystals. The effects of the next orders of 
perturbation are the subject of a subsequent report. 

Since to first order the effects of more than one 
additional reciprocal-lattice point are additive, we 
concentrate on a single three-beam interaction, with 
OH as the primary diffraction, and L as the third 
reciprocal-lattice point. Detailed applications are 
worked out primarily for the symmetric Bragg case, 
but the method has general applicability. 

2. The central equations and the two-beam limit 

This section establishes the general notation and the 
basic equations, following the treatment of Batterman 
& Cole (1964), and for further reference summarizes 
the main results of the two-beam symmetric Bragg 
case. 

In the three-beam case, three X-ray fields interact 
in a crystal with propagation vectors Ko, Ku, KL which 
are related through Bragg's law 

Kn = Ko+H, KL=Ko+L (1) 

via the reciprocal-lattice vectors 0, H, and L. All fields 
have a spatial dependence exp (iK.r). In addition to 
(1), Maxwell's equations require that the associated 
electric field amplitudes Eo, EH, EL must satisfy the 

three vector equations 

2/ffoEo + k2FFa E n + k2FFc E L = (Ko. Eo)Ko 

k2FFn Eo + 2k~n En + k2FFr.-/~EL = (KH.  En)Kn 

k2FFLEo + k2FFL_.En + 2k~LEL = (KL.EL)KL. 

(2) 

Here k = to/c is the magnitude of the vacuum propa- 
gation vector, F--e2/(eomo~2vce,) measures the gen- 
eral strength of X-ray scattering, and the individual 
scattering amplitudes are given by the (complex) 
structure factors F. The ~'s are the (complex) changes 
in magnitude of these K vectors from their average 
within the crystal. Within the approximation implicit 
in (2) of ignoring all such changes of order higher 
than F, they are given by 

f, = (K,. K,) ' / 2 -  k(l -~rFo). (3) 

In practice, the nine scalar equations of (2) reduce 
to six equations involving only the three pairs of 
independent field components transverse to their 
respective K vectors. Solutions of these six homo- 
geneous equations are characterized by the 
geometrical condition that the tiepoints of all propa- 
gation vector sets (Ko, Kn, KL) consistent with (1) and 
(2) lie on a six-sheeted dispersion surface in k space. 

Rather than construct this surface in its entirety, 
we concentrate on its intersections with the two-beam 
plane of incidence defined by Ko and Kn. Within this 
plane we will study the change in form of the disper- 
sion curves as the pure two-beam case is perturbed 
by the presence of L. 

Thus the two-beam solution of (1) and (2) serves 
as a reference. For completeness, we list it below. It 
is given by two normal modes, o- and 7r, linearly 
polarized normal to or within the plane of incidence, 
with the dispersion relations and field amplitude 
ratios 

o': ~o~n = ¼k2F2 Fnff ~, - 
E~ 
E~ 

7r: s%s ~. =¼p2k2F2FHFa,--  
E Tr 

H 

kFF.  

PkFFH 

E~ 2~:n ' 

(4) 

where P = cos 20s, with OB = sin -~ (H /2k )  being the 
geometrical Bragg angle of this interaction. 

In absorbing crystals, (4) must be supplemented by 
boundary conditions that couple the unattenuated 
exterior ( z > 0 )  waves to the lossy interior ( z<0)  
waves, in order to have a complete solution. For a 
symmetric Bragg reflection, where H is normal to the 
crystal surface (z=0) ,  the boundary conditions 
impose the relation between Go and ~?,: 

Go + ~,  = 3 = k( iFF~-  /tO sin 2Os) (5) 

where/tO is the deviation of the angles of incidence 
and reflection from the actual Bragg angle. 
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As is well known (Afanas'ev & Perstnev, 1969), the 
integrated intensity of the two-beam reflection in 
the approximation ignoring absorption in the Fn is 
given by 

2F IF I 2 
sin 208 IF F l'" 

If l 
4s in208  Fg ' 

A0 sin 208/  

A0 sin 208]' 

(6) 

depending on whether IF~,l >> IFgl (strong reflection) 
or IF~[  < IFg] (weak reflection), in the two limits. The 
brackets on the fight side give the angular ranges for 
the main contribution to each integral. 

3. Geometrical  r e l a t i o n s - t h e  symmetric Bragg case 

The reduction of (2) to six scalar transverse equations 
will be carded out using the orthogonal coordinate 
system (~ ,  ky, k~) shown in Fig. 1. The k~ -  k~ plane 
is the two-beam plane of incidence, and the origin of 
coordinates is at the Lorentz point in this plane. 
In the conventional linear approximation the 
geometrical three-beam Lorentz point lies somewhere 
along the ky axis, and is here given the coordinates 
(0, - k  cos 08 tan ~r, 0). 

For a tiepoint (k~, 0, k~) in the plane of incidence, 
the three K vectors have the components 

Ko = (k' cos 08 - kx, 0, - k '  sin 08 - k~ - ix) 

Ku = (k' cos 0s - k~, 0, k' sin 08 - kz - ix) 

KL = (k' cos 0L cos q~L- k~, k' cos Or sin 9L 

- k cos 0a tan ~r, k' sin 0L-  k~ - ix), 

(7) 

-~FFo) is the magnitude of the real where k ' = k ( l  ~ ' 
part of the average propagation vector inside the 
crystal. 

The angles 0L and ~z. (Fig. 1) define the direction 
of KL. Only the z components in (7) contain an 
imaginary part, since because of (1) all K vectors can 
at most have a common imaginary component normal 
to the crystal surface. 

Substitution of (7) in the fight side of (3) connects 
the set Eo, Eu, EL to k~, kr, k~: 

E0 = -k~ cos 08 +(kz + ix) sin 08 +½ikFF'~ 

En = -kx  cos 08 - (kz  + ix) sin 08 +½ikFF'~ (8) 

EL = -k~ cos 0, cos ~ -  k cos 08 tan tpr cos 0L sin ~ ,  

-(kz + ix) sin OL +½ikrF'~. 

Since kx = kA0 sin 08 is fixed by the incident-beam 
angle AO relative to the actual Bragg angle, the sum 
of the first two equations in (8) reduces to (5). The 

third equation in (8) relates E~ to the other E's: 

EL = - k  cos 08 tan Cr cos 0L sin ¢~ + 

sin OL 
2 sin 08 (EEo- 8) +½ikFFg. 

COS 0L COS tpL 8' 

(9) 

2 cos 08 

Hence, using (5) and (9), we can express all ¢'s in 
(2) in terms of one, e.g. ~o. 

In what follows, we make particular use of the fact 
that in the active two-beam region 8 and E0 are small, 
while k tan ~ r  can be much larger, so that for a wide 
range of ~ r  (9) can be approximated by its first term. 
For the time being, however, we will retain the entire 
form of (9). 

The transverse electric-field amplitudes can be sep- 
arated into orthogonal o- and ~r components in the 
real-space coordinate system x, y, z analogous to that 
of Fig. 1, by following the prescription defined in § 2: 

E~ = E~(O, 1, O) 

E~ = E~(0,  1, 0) (10) 

E~ = E~( - s i n  ~PL, cos 4'L, 0) 

E~ = Eg(sin 08, 0, cos 08) 

E~ = E ~ ( - s i n  0s, 0, cos 08) (11) 

and 

E~ = E ~ ( - s i n  0~ cos eL, - s in  0L sin eL, cos 0L). 

The 0 and H fields follow the conventional defini- 
tions of tr and ~r polarizations. The directions of E~ 
and E~ are chosen to have E~ lie in the kx-ky plane, 
and with E~ along KLxE~,  so that for ~ L = 0  these 
fields also reduce to the conventional two-beam 
polarizations. 

With the definitions (7), (10) and (11), we can 
construct all the transverse fields contained in (2). 
For example, the first equation in (2) must involve 
the projections of all fields on the directions of either 

k 

Fig. 1. Local coordinate system in k space, with the two-beam 
Lorentz point at the origin in the OH plane of incidence. 0i. and 
~t. define the direction of KL. As shown, the tie point of the K's 
and the geometrical three-beam Lorentz point are also at the 
origin, but both may be elsewhere. 
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Eft or E~'. These are, for Eo, Eu, and EL, respectively, 

along ES: E~, E~ ,  E~ cos ~0L-- E~ sin OL sin ~0L; 

along Eg: Eg, E~ cos 20a, 

- E  ~ sin 0s sin ~OL 

+ E ~  ( - s in  OB sin OL COS ~0L +COS 0~ COS OL). 

4. General pseudo-two-beam formulation 

The projection approach outlined in the last two 
sections leads to the six transverse equations con- 
tained in (2). According to their tr or 7r character, 
they can be grouped in two sets: 

2s%E~ + kFFaE~ + kFF£( PxE°L - PxzE ~) = O 

krFnEff + 2 ¢ n E ~  + kFF£_a( PxECL - P.zE~[) = O 
(12a) 

krF,.(PxE~- PoxEg) + krFL_,(PxE~ +PoxE 7,) 

+ 2 & E ~ = 0  

and 

2~:oE~ + kFPFa E ~ H 

+ kFF£[-Po,,E~ +(Poz - Poxz)E [] = 0 

kFPFHEg + 2~HE~ 
(12b) 

+ krFc_n[PoxE~ +(Poz + P0xz)E[] = 0 

kFF,[-P=E8 +(Poz- Po=)Eg] 

+ kFFL_u(-P=E~ +(Poz + Po=)E~) + 2~LE~ = 0. 

The P's  are combinations of the geometrical factors 
appearing in (10) and (11), given by 

P = cos 20s, P,~ = cos eL, Pox = sin 0s sin eL, 

Pot = cos 0n c o s  OL, Pxz = sin ~0 L sin OL, (13)  

Po= = sin 0a cos ~L sin OL. 

Since our main interest is in the fields propagating 
along Ko and Kn, we now eliminate E~ and E~ from 
(12). This procedure introduces the factor 1/(L in all 
terms resulting from the L fields, and thus identifies 
this quantity as a convenient perturbation expansion 
parameter. 

By solving the last lines of (12a) and (12b) for E~ 
and E~, and substituting for these fields in the four 
other lines, we obtain the following four equations, 
again written in two groups: 

(2~o k2F2FLF£ L 

kFFcFL_H H,)E~H 
+ kF(Fa - 2~L 

k2F2F£ 
+ (FL112Eg-FL_u113E74)=O 

26_ 
(14a) 

kFFLFg_a ) 
kF Fn 2~L 11, Eo 

( 22 ) 
+ 2~H k F FL-nF£-ft 

-- 2~L 111 E ~  

k2 F2 F£_a 
-~ 26_ (F,11:E;- F;_,_,113Eh)=O 

and 

( 2~o k~F~FLF£ 11~)E~ 
2fL 

kFF£FL_n ) ,~ 
+ kF PFa 2¢L 116 E ,  

k2 C2 Ff 

2~L ~ II2(FLE~ + FL_nE~)= O 

kFFLF£_F; ) ~" 
kF PFn 2~L 116 Eo 

(14b) 

k2F2FL_nF£_a 
+ 2~n 2~L Hs) E ~  

k2F2 FE_gl 
2~ 113(FLE'~) + FL_HE~)=O. 

The factors / / ,  to 116 appearing in (14) are new combi- 
nations of the geometrical terms defined in (13): 

//, = P2x + P~z 

112= PxPox +(Poz- Po=)Pxz 

113= PxPox-(Poz + Po=)Pxz 

n4= P~ox +(Poz- Po=) 2 

Hs = p2x +(Poz + Poxz) 2 

116 = -p2x + p 2 _  p2o=" 

(15) 

Equations (14) ,can be simplified formally by 
introducing reduced variables. Let us refer all ~:'s to 
the common scale kF, and to appropriately shifted 
origins: 

4, =f,/kr, 
- 1 FLF£ 
~ = ~o/ k r - z  11., 

4 

- FLF£ 
~ = ~ o / k r - ~  ~L 11~' (16a) 

- 1 FL-nF£_~ 
~ =  ~ . / k r - z  11,, 

4 

~ = ~n / kF --1 FL- nF£-~ a 115. 
4 ~L 
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In addkion, we introduce the modified structure 
factors 

F~L = F .  - Fr_FL-./ 2~'Ln,, 
(16b) 

FF_,F L_ n 
F~L = P F " -  2~L 116" 

Using (16), the four lines of (14) take the compact form 

.-~ ~ +l_ FcFL112Eg 2 oEo +F ,LE  2 gL 

1 F£FL-H 
2 11  7,=o 

z~ ~ 1 Fc_aFL 
F~LE'j +2¢nE n +~ ~L H2E~ 

1 Fc-aFL-n  (17) 113  , =o 

1 FcFL-H 1 F~FL H2E~ + - -  H2E~u 
2 6 .  2 

'~.'rr ~ "rr 71" +2~o Eo + F m . E n  =0  

1 F£-aFL 1 F £ - a f L - n  
2 ~L 113E'~ - ~  ~L 113E°'n 

~.rl" 71" +F~LE~ +2~HEH = O. 

The secular equation following from (17), that 
defines the dispersion surface, can be put into the 
form 

~Ft-tLF a£)(~:o ~:n --~-- H L  ~t Aft-,) 

1 "cr  

- 16 2 [ F , . _ . F c - a &  + F, 

-~(FcFL-HF~t.  + FLF£-aF~D] 

2",. FLFr.11~h x[Ft.-nFr.-a113~o + 
1 ~112113(Fr.FL_uFm. + Ft.Fc-aF~£)]. (18) 

Together, (17) and (18) represent an exact formula- 
tion of the three-beam problem, cast in terms of 
modified variables. Note that because of (16a) the 
pairs of variables ~ ,  ~ and ~ ,  ~ are not indepen- 
dent. The exact two-beam case occurs in the limit 
1/~L ~ 0. For finite 1/~L, a non-vanishing right side 
of (18) implies that the normal modes of propagation 
in the crystal are no longer plane polarized. Equation 
(18) also brings out the differences in the perturbation 
approach for X-rays and electrons. For the latter, it 
becomes (Gje~nnes, 1962): 

- "  F ,Fac) = o, 

which corresponds to the first bracket of (18) alone, 
with H~ = 1, in consonance with the fact that electron 
fields are scalar. 

Since the geometrical decomposition of the fields 
of § 3 relies entirely on a coordinate system tied to 
H and is independent of any boundary conditions, 
(17) and (18) are valid for all three-beam cases. Other 
directions of the crystal surface relative to H only 
modify (7) to (9). Thus, for the symmetric Laue case 
the relations between the ~'s become: 

Go- ~ ,  = - 6  = k sin 20B dO 
sin 0L 

~:t. = - k  cos 0B tan ~0r COS 0L sin ~or -t 
2 sin 0n 

COS 0 L COS 
+ ~PL (2~0 + 6) 

2 cos On 

i ( 1  c°S OL C°S ~°t)(kFF'~) 
+2 cos 0~ 

(19) 

so that here 6 is purely real. Since the leading term 
in ~L is the same as in (9), all conclusions based on 
it alone in the Bragg case also remain valid in the 
Laue case. 

5. The first-order solution and its range of validity 

The underlying criterion for treating the three-beam 
case as a pseudo-two-beam case is that SOL can be 
taken as parameter rather than as a dynamical vari- 
able, or that ~:L can be approximated by the first term 
in (9). Since we are interested in solutions close to 
the two-beam region of total reflection where s%, scH 
and 6 are all of the same order of magnitude as kFFH 
(or kFF'~), or less, this approximation should be valid 
as long as 

tan ~Or >> FFu, FF~ (20) 

or, from (6), when q~r is much larger than the width 
of the primary reflection. This is not a very strong 
restriction. 

Within this pseudo-two-beam framework, an exact 
analytic solution of (18), a fourth-order equation in, 
say, ¢~, is still not generally obtainable. But approxi- 
mate analytic solutions are possible, as perturbations 
on the pure two-beam solution. We define the first- 
order solution as that obtained when the right side of  
(18) is set equal to zero. 

This solution is evidently correct to power 1/~L in 
all variables. It also includes those corrections to 
second order that still allow the left side to be 
obviously factorable, and therefore in a form closely 
resembling that of an exact two-beam case. 

It is difficult to establish a precise criterion for the 
validity of this truncated solution, because of the 
various geometrical factors and the occurrence of 
the variables ~: on the right side of (18). Since typical 
terms on that side are small compared to typical terms 
on the other side when 

l lF, l lF , - . I  (21) 
& >>2 IFu 
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this inequality should serve as a rough, and probably 
conservative, measure. 

For three strong F's,  with reflection widths typi- 
cally of a few seconds of arc, (20) and (21) are 
equivalent, so the first-order solution should be good 
for ~0T as small as a minute, or less. For a weak 
primary reflection FH, with the other two strong, (21) 
predominates, and the first-order solution may break 
down at larger angles. Since many of the interesting 
features of the onset of three-beam effects scale in 
angle as (21), these continue to be describable by 
first-order theory. 

As already mentioned, the proposed first-order 
solution goes beyond first order in I/EL by includ- 
ing terms to 'complete the square' in each left side 
bracket of( l  8). This inclusion defines the most general 
solutions retaining the o- and rr normal modes of the 
two-beam case. More exact higher-order solutions 
must treat the mode coupling, including the case that 
the starting modes are degenerate. 

6. General features of  the first-order solution 

When the right side of (18) is set equal to zero, the 
solutions of the three-beam problem correspond to 
the traditional or- and 7r-polarized normal modes of 
the underlying two-beam case. The only changes are 
that the structure factors are modified, and that the 
Lorentz points are shifted. All other physical con- 
sequences are exactly those of the two-beam case 
summarized in § 2. 

Further discussion is simplified by introducing a 
scale parameter for ~0T that is naturally adjusted to 
the limit of validity established by (21). Let 

1 FLF£-a 11, 
X-- FH 2~r 

[_ _r 
2tan~ork  FH 

°,  )] (22, 
COS 0 B COS 0 L s in  ~L 

Then (16b) becomes 

( l )  
FSL = Fn 1 +x  ' F~L = Fn P +--~ (23) 

and the integrated intensities following from (6) rela- 
tive to that of the exact o- two-beam case are 

where the exponent n varies from 1 to 2 as the primary 
reflection changes from strong to weak. 

The most dramatic consequence of (24) is that it 
predicts a universal description of the effect of L on 
the relative OH integrated intensity in terms of the 
angular scale based on (the real part of) x. Further- 
more, (24) is strongly asymmetric with respect to the 
sign reversal of x, producing intensity enhancements 
and reductions on opposite sides of the three-beam 

point ~OT = 0, with the sign of x relative to that of ~0T 
fixed by the (invariant) phase of the combination 
(FLFr__a/Fn). The application of this behavior to 
phase determinations in centrosymmetric and non- 
centrosymmetric structures has already been dis- 
cussed (Juretschke, 1982a, b), and attention has been 
drawn to the possibility that the sign of FIr/H, may 
introduce an additional reversal of asymmetry 
between the cr and rr modes. 

If x is largely real, (24) in fact predicts a vanishing 
reflected OH intensity at x = -1 ,  or x = -116/P11,, for 
the two polarizations. How strongly this prediction 
is actually fulfilled depends sensitively on the exact 
range of validity of the first-order solution. For x of 
order unity, both sides of (21) are of similar magni- 
tude, and unless (21) sets a conservative criterion in 
any specific case, the minimum of intensity will prob- 
ably be less pronounced. This, however, in no way 
affects the asymmetries in (24) predicted for larger x. 
A closely related vanishing of structure factors has 
been seen in electron diffraction (Watanabe, Uyeda 
& Kogiso, 1968). 

Because of the shifts of origin introduced in (16a), 
the first-order solution also contains a shift in the 
two-beam Lorentz point as a function of x. For o- 
polarization it is 

kFF,  Fr_ + 
Akx - 4 cos On Ft._ a FL ] 

Akz = 4 sin 0~ F--~--a FL / ' 

where the prime indicates the real part. For ~" polariz- 
ation, the same expressions hold if the first term in 
each inner bracket is multiplied by 114/11,, and the 
second by 11s/II,. This shift is also antisymmetric in 
x, but, being proportional to F 2, will generally be 
very small, of the order of a fraction of a second, for 
Ixl ~ i. it implies that the approach to the three-beam 
Lorentz point is not monotonic. The imaginary parts 
of the shifts in (16a) will modify the absorption. 

The first-order solution also predicts scattering into 
the KL channel. From (12a) and (12b), the relative 
field amplitudes for each mode are: 

( E L _ I  FH Px I + - -  
E'~ x Fc-a 1I, FL E'~] 

(26a) 

E '~ - x Fr_- a 111 1 FL E '~ / 

, p. Po ( a_.e;q 
E ~ -  x F£_a 11, 1 FL E~]  

E~ 
_1  F ,  1 ] poz_ Poxz (26b) 

E~ x Fr._a H, 

FL- n ( Poz + Poxz ) • +EL 
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As expected, the intensity along Kt. varies like 1Ix 2. 
As Ix |approaches unity, (26) predicts comparable 
intensities for the OH and 0L reflections.. Note, 
however, that in this range of x the 0L intensities are 
explicitly symmetric in x, and any asymmetry as a 
function of ~or must lie inside the brackets in (26). 
For weak primary reflections, these brackets are 
always of order unity. In that case the relative 
integrated intensities in the K,  direction correspond- 
ing to (24) are 

IL(Or ) l l IF;;I 2 
- I x l  2 n ,  IF _, I 2' 

l lml  IFgl 2 (27) 
IT-, - I x l  2. 

For strong reflections, there may either be some 
enhancement or a diminution, depending on the net 
sign and the magnitude of the term modifying unity 
in each bracket. 

One limitation of this solution must be noted. The 
angular factor in the denominator of (22) is propor- 
tional to the projection of K~ on the k~ axis. As this 
projection decreases, the condition Ix ] -  1 occurs at 
increasingly larger ~or, so that the features described 
above also do. For KL in the plane of incidence, the 
three-beam Lorentz point is always in the k~-  kz 
plane. The first term in (9) vanishes, and ~:L is always 
a dynamical variable. 

7. The Ge 222/111 interaction 

Equations (24) and (25) summarize the most impor- 
tant formal results of the first-order solution. We will 
apply them to the specific case of Ge, H = 222 and 
L =  111, which has already received considerable 
experimental and computational attention. Table 1 
lists the parameters applying here, and Fig. 2 shows 
the result of using (24) with n = 2. The scale connect- 
ing x and ~07- is, using the data of Table 1 in (22), 
tan ~or = 2.21 x 10 -3 x, or ]~oT] = 7-60 minutes of arc 
when Ixl--1. The figure includes both o- and ~- 
intensities, and the inset shows the details of the 
intensity variation for both polarizations around the 
minima near x = -1 .  For all Ixl-> 1, the predominant 
o- contribution of Fig. 2 should be compared to 
experiment, usually carried out with unpolarized 
incident radiation. As shown in the next section, the 
comparison with recent high-resolution experiments 
(Nicolosi, 1982) is very satisfactory, in the overall 
asymmetry of the intensity as well as in the location 
of the minimum, even without making allowance for 
any of the usual experimental divergences. Com- 
parison with an exact computer solution of this case 
(Chang, 1982) is equally satisfactory. Thus, at least 
for integrated properties, the simple analytic form of 
(24) contains the major elements of this three-beam 
interaction in the interesting region Ix] ~> 1. 

Table 1. Numerical inputs for the Ge 222/11T 
interaction 

Cu K a  radia t ion k (=  21r/A) = 4-08 x l0 s cm -n 
Ge 222 reflection 0 a = 28-15 °, F = 1.175 x 10 -7 

F222 = 1.0, F ~ o  = 7-35 
Coup l ing  parameters  

to 111 Fnl i  = 151, ~oL = - 2 7 . 8 0  ° 
FiT ~ = -121 ,  0 L = -18 .33"  

Angular  parameters  
of  (13) and  (15) P = 0.5549, Px = 0-8846 

Pox = -0 .2200,  Poz = 0.8370 
Px= =0-1467,  P o x z =  - 0 - 1 3 1 2  

/-/I = 0.8040, /-/2 = -0"0526 
H 3 = -0-2982,  //4 = 0-9858 
//5 = 0.5466, //6 = 0.6350 

From (27), the relative integrated intensities going 
into the KL direction are proportional to 
IF ,12/IFc_ 12-o.o037, so that even for Ixl--1 they 
are negligible compared to the variations of the OH 
intensity. 

As a test of the goodness of the first-order solution, 
we have evaluated the right side of (18), using the 
left-side solutions that assume it to be zero, in two 
ways. In the first, the right side residual, designated 
by S(8, x), is determined starting from either of the 
first-order o- or 7r solutions (~:0, ~H) for a given 8 of 
the left, and then applying the relations (16a) to 
interconnect with the remaining ~:'s appearing in S. 
In the second way, both cr and 7r first-order solutions 
are used simultaneously to evaluate S. The results of 
these procedures are shown in Tables 2(a) and 2(b), 
which list the absolute values IS ~" and I S= obtained 
by the first approach, and the value Isl obtained by 
the second, all in the range of 8' which contributes 
most to the integrated intensity. The common scale 
for all variables is that introduced in (16a). 

All values of S lie below unity. This occurs in a 
region where the complex 8 is always of order 10 and 

-:~ -1 x \ 

1.0, . " , \  

0.5 " ' -"  - -  

I I I I 

- 3  - 2  - 1  0 1 2 3 x 

Fig.  2. G e  2 2 2 / l  l 1. I n t e g r a t e d  OH i n t e n s i t i e s  IHL VS X r e l a t i v e  to  
t h e  t w o - b e a m  p r i m a r y  r e f l e c t i o n  I ~ ,  a c c o r d i n g  to  (24).  T h e  i n s e t  
e n l a r g e s  t h e  r e g i o n  n e a r  x = -  1. 
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Table 2. Absolute values of the residual of the right 
side of (18) for Ge 222/1 l i 

E a c h  t r ip le t  l ists Is~l, Is~l, a n d  Isl, e v a l u a t e d  as  e x p l a i n e d  in the  text ,  b e l o w  

each  o ther .  

(a) x<0 
g'= 10 5 2 0 -2 -5 -10 

x 
0-076 0-036 0.026 0-022 0.022 0-029 0.056 

-2 .0  0-067 0.035 0.025 0.023 0-024 0.031 0.061 
0.105 0.054 0-039 0.035 0-037 0.049 0-095 

0.141 0-073 0.050 0.042 0.040 0.048 0.091 
- 1.5 0.126 0.065 0.046 0.040 0.041 0.053 0.103 

0-196 0-101 0-071 0-063 0.064 0.083 0.161 

0-215 0-113 0-077 0.064 0-059 0.067 0-123 
- 1.25 0.189 0.098 0.068 0-059 0.058 0.074 0.142 

0.294 0.151 0-106 0.091 0.091 0.115 0-222 

0.366 0.195 0.133 0.109 0-097 0.102 0.173 
- I . 0  0-315 0-163 0.112 0-094 0.090 0.109 0-207 

0.488 0.252 0.173 0.147 0.141 0.171 0.324 

0-744 0.407 0.281 0.228 0.198 0.189 
-0.75 0.618 0-324 0.219 0.179 0.162 0.180 

0-956 0.501 0.339 0.278 0-252 0-282 

(b) x>0 
x 

0-221 0-204 0.251 0.299 0.365 0.508 
0-75 0.262 0.182 0.200 0-234 0.287 0.409 

0-410 0-285 0.314 0.367 0.447 0.634 

0-137 0-101 0.117 0.140 0.173 0-246 
1.0 0.163 0.102 0.103 0-118 0.144 0.207 

0.256 0.159 0.162 0.185 0-225 0.321 

0-062 0.068 0.080 0.100 0.143 
0.066 0.063 0.071 0-086 0.124 
0.103 0-099 0.111 0-134 0-193 

0-071 0-043 0-044 0.052 0.064 0.093 0-172 
i -5 0.081 0-046 0.043 0.048 0.057 0-082 0.155 

0.127 0.072 0.068 0.074 0.089 0.128 0.240 

0-044 0.024 0.023 0.027 0-033 0.048 0.090 
2.0 0-048 0-027 0-024 0.026 0.031 0.044 0.083 

0.075 0.042 0.037 0.040 0-048 0.068 0.129 

0-096 
1-25 0-112 

0.175 

implies an appreciable internal cancellation of terms 
in S, and confirms the goodness of the first-order 
solutions. All IS I values decrease towards the Lorentz 
point corresponding to each x, and since the actual 
complex function S swings through roughly 180 ° in 
passing through this region, its effects on any 
integrated properties are further minimized. As 
expected, all ISlvalues increase as Ixl decreases, and 
the numbers in Tables 2 suggest that for Ix[ <1  the 
right side of (18) cannot be neglected. This agrees 
with the estimates of § 5, now applied to a weak 
primary reflection. 

To get an idea of how well the criteria involving S 
apply to a strong primary reflection, we have 
examined the same 222/111 case, but now arbitrarily 
setting Fg = 0. Fig. 3 shows Isl obtained for the same 
range of negative x as in Table 2(a), plotted against 
k~ = kx/(Fk). From (5) and (6), the strong reflection 
occurs in the range Ex=±lF.,l/2cosoB=±lt+ 
1/x[/1.763, relative to the shifted Lorentz point of 
(25). Over this range S is exceedingly small, except 
for Ixl < 1. The Isl in Fig. 3 are much smaller than 
those of Table 2 because here the real part .of 6 sets 

the measure of smallness in (18), while in Table 2 it 
is controlled by the large constant imaginary part of 6. 

Hence, the first-order solution gives a good 
approximation for Ixl ~ 1, for both weak and strong 
primary reflections, at least for the chosen combina- 
tion of F ' s  and H, L. 

The hypothetical strong reflection case is used in 
§ 9 to explore some of the underlying physics of the 
first-order solution. 

8. A p p l i c a t i o n s  o f  the f irst-order so lut ion  

The basic first-order solution of a three-beam interac- 
tion of § 6 can be easily extended to other multiple- 
beam interactions. This section discusses some of 
these extensions under separate subheadings. 

0.266 A. Many neighboring three-beam cases 
0.329 
0.516 As the angle q~ is varied in a Renninger experiment, 

successive three-beam interaction points of the 
reciprocal lattice are brought close to the Ewald 

0.884 sphere. In first-order theory, these effects are c0m- 
0-741 
1.145 pletely additive. Hence, at any general angle q~, the 
0.441 effective structure factor becomes a generalization of 
0.381 (16b), for example for the tr mode, of the form 
0.591 

0.261 F£Ft.-n 
o.231o.358 F , -  nf 

2sgM /-/M - - . - - ,  (28) 

ISI .005 x=-2.0 

i i x 
-I.0 . 

1.005 

x = - 1 . 5 ~  ~ , , , ~ .  k, 
i 

-~.o tlo 

x= -I.25 

- I . '0 ' 

x=-0.75 

- LO ' 0 I .O 

Fig. 3. Residual values IS I of the right side of (18), a measure of 
the goodness of the first-order solution, for several x near x = - 1, 
for the hypothetical strong reflection Ge222/111 without 
absorption. 
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and similarly for the 7r mode. Other effects, such as 
the shift of the Lorentz point, are also additive. The 
integrated intensity in the KH direction resulting from 
(28) follows by using (6). The angle tpr in each of the 
ffL's appearing in (9) is measured relative to its own 
three-beam angle ~orL, and the Hi's are determined 
by (15) separately for each interacting triplet. Gen- 
erally, only one of the ¢L's will be small in the neigh- 
borhood of any one three-beam point, so that its 
contribution predominates. All other neighboring 
three-beam points give corrections, which, because 
the entire diffraction process is coherent, are added 
in (28) rather than as separate intensities. 

This procedure has been applied to calculate the 
pattern of five neighboring three-beam interactions 
of Ge 222, since high-resolution experimental data 
for this group have recently become available 
(Nicolosi, 1982). Fig. 4 is a copy of some of the data 
of Fig. 18 of that reference, and Fig. 5 shows the 
calculated pattern, assuming unpolarized incident 
radiation, based on the data for each of the three- 
beam points listed in Table 3. The only adjustment 
involves a translation from our ~o scale of Fig. 1 to 
that used in the experiment, ~Oexp = 30 ° -  ~. All other 
features, such as the relative asymmetries, the widths 
of the reflections, the long tails and the changes in 
level of the 'primary' reflection background between 
peaks, are completely determined by the input data 
of Table 3. The overall agreement is very satisfactory, 
considering that no experimental divergences have 
been included in Fig. 5. These probably mask the dips 
for the 133 and 313 points. The absence in Fig. 4 of 
the pronounced minimum predicted for the 711 point, 
though, may indicate the importance of higher-order 
influences in certain reflections. In Fig. 5, all 0, 's are 
small enough so that for each peak the tr and w dips 
lie on the same side, but, since they occur at different 
~, some of the sharp features predicted for polarized 
radiation average out. [For high 0,, where the two 
dips can be on opposite sides, some minima may then 
become obscured altogether. Clearly, unpolarized 
incident radiation may cause a substantial loss of 

i I 
3 0 *  28  ° 

~1 6ol 

I I I I 
26  ° 24  ° 22  ° 20  ° 

Fig. 4. Experimental Renninger chart for Ge 222/L reproduced 
from Fig. 18 of Nicolosi (1982). 

Table 3. Numerical inputs for a sequence of  Ge 222/L 
interactions 

L = 3ig l li 133 7TI 331 
F~_ 103 151 103 64 79 

F ~ _ H  79 - 121 - 9 0  79 64 
~OTL(°) 7-77 5-43 3 .47  2. ! 6 - 2 - 1 6  

3 0 ° -  ~orL( * ) 22-23 24 .57  26 .53  27 .84  32 .16  
~0L(°) --90" 13 - -27"80 79-90 -- 150"30 ! 50"30 
OL(°) --38"98 -- 18"33 -- 18"33 38"98 --38"98 
H l 0"3956 0"8040 0"1266 0"8516 0"8516 
/16 0"2472 0"6350  0"4841 0-3487  0"3487 

( tan  ~o/x)t - 2 - 7 6 x l 0  - 4  2.21 x l 0  -3  - 8 . 3 7 x l 0  - s  - 7 - 4 5 x l 0  - 4  7 . 4 5 x l 0  - 4  

information whenever the zr mode can mask the 
asymmetry of the o- mode. This is especially serious 
in noncentrosymmetric crystals, where all asym- 
metries are expected to be less pronounced 
(Juretschke, 1982b).] 

Equation (28) also contains the long tails seen 
experimentally, and found by computer simulation 
(Chapman, Yoder & Colella, 1981), as a natural con- 
sequence of conventional dynamical theory that con- 
serves both energy and momentum. These tails can 
produce pronounced steps, even between peaks 
several degrees apart. Their range will be the larger, 
the smaller the FH of the primary reflection, and may 
have to be taken into account when determining very 
small structure factors (Mills & Batterman, 1980). 

B. Four- or higher-beam cases 

In first-order theory, four-beam cases are described 
by the coalescence of two three-beam points, such 
that, for example, in (28), ~07-t = ~orM. Now, two of 
the ~L's in (28) will be large in the neighborhood of 
the common three-beam point. The effective structure 
factor is then determined by the weighted contribu- 
tion of these two three-beam couplings, depending 
on their F triplets, and on their respective geometrical 

G e  

222/7-H 133 lit 3i~ 

Z 

- 4  

- 2  

! i i 

26" 
/7? i 

24* 22* 30 ° 28" cp 

Fig. 5. Theoretically predicted Renninger chart for four peaks of 
Fig. 4, using (28) and (6) with the inputs of Table 3, for unpolar- 
ized incident radiation. The two-beam primary reflection I~ is 
taken as unity. 
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factors. This approach to analyzing four-beam inter- 
actions has been found to work well experimentally 
(Gong, 1983), when the two contributions have the 
same sign. 

The extension of this argument to n > 4 is obvious. 

C. FH=O 

If the primary reflection vanishes, the first-order 
solution of § 5 in terms of the quasi-universal scale 
x no longer applies, because the transformation to 
this scale becomes singular. However, all equations 
of § 4 are still valid, with the new feature that, for 
example in (17), all fields are now multiplied b.y 
factors of similar magnitude. First-order perturbation 
breaks down, and the coupling between the o- and zr 
modes cannot be neglected at any stage of approxima- 
tion. We are always in the regime x,~ 1 of the simple 
formulation that forms the basis of this paper. 

9. The physics of the first-order solution 

The two central features of the first-order solution 
discussed here are, first, that there exists a quasi- 
universal scale, the x scale of (22), for measuring the 
strength of the coupling and, second, that for Ixl ~ 1 
the main effect of this coupling is a modified structure 
factor, (16b), in an otherwise normal two-beam case. 

The universal scaling depends on the relative scat- 
tering strength F t F c _ a / F H ,  and also normalizes the 
motion of L across the Ewald sphere relative to 
changes in ~p. Its other angular factors are related to 
polarization effects. 

The modification of the structure factor implies 
that initially the coupling distorts the two-beam dis- 
persion surface in a manner preserving the two-beam 
character and, depending on the gap width, either 
more or less energy is sent into the K ,  direction. 

To illustrate these distortions, we have computed 
the real part of the o- and zr dispersion surfaces for 
several x, for the hypothetical case of Ge 2 2 2 / I l l  
with negligible absorption. Fig. 6 shows the results 

- ° "  ,_f 11/ 
//4.-,.o i /  ; ,/ /.~t __  //L /,  /,, 

Fig. 6. Real part of the tr and ~" dispersion surfaces exciting fields 
in a semi-infinite crystal, for the first-order solution of the 
hypothetical Ge 222/11T strong interaction. The horizontal por- 
tions are the regions of total reflection. 

for the symmetric Bragg case in a semi-infinite crystal. 
It demonstrates both the shift of the Lorentz points, 
different for o- and 7r, and the width of the totally 
reflecting regions, as they vary with x. The curves 
exemplify the initial stage of the topological distor- 
tions already discussed by Fues (1938), and later by 
Stern, Perry & Boudreaux (1969). 

Following Kambe & Miyake (1954), the effects of 
this distortion can also be described by plotting the 
opposite edges of the totally reflecting regions of 
Fig. 6 as a function of x. This is shown in Fig. 7. The 
asymmetry of the width of the reflecting region (and 
therefore of the integrated intensity) is clearly brought 
out, and the vanishing of both reflections occurs close 
to x = - 1 ,  where the edges cross. This crossing is 
reminiscent of the crossing of bands in the electron 
theory of metals and, in fact, represents a similar 
phenomenon: under certain conditions the structure 
factor for a particular reflection vanishes, and with 
it the gap in the band structure. Bloch waves consist- 
ing of single plane waves can propagate, and no 
diffraction occurs. 

From this point of view, interference is not the 
primary cause (Hiimmer & Billy, 1982) of the asym- 
metry of the integrated reflected intensity, but results 
from the effects of the distortion on the modes of 
propagation. In addition, modifications of the disper- 
sion surface, such as in Figs. 6 and 7, are largely 
independent of absorption, so that absorption is not 
fundamental in explaining the asymmetric features 
of the reflected intensity in the angular range near 
x = -  1, certainly in perfect crystals. 

Figs. 6 and 7, and their implications, are exact only 
for the first-order solution, as they would be for strict 
two-beam cases. Many of their extreme features will 
be softened by including absorption. Beyond that, 
the coupling of the tr and zr modes in the full solution 
will remove the degeneracies at the crossing of the 
band edges, so that there will probably always remain 

1.0 
- - . - . . . . .  

, , \ o  , , S;Ox 

-2:oZ-.2. cb - - _ _  

Fig. 7. Edges of the totally reflecting regions of Fig. 6 vsx. 
These curves also represent the intersections of the two-beam 
planes of incidence with the dispersion surface obtained when 
the geometrical three-beam point is at the origin, and projected 
on ~: = 0. The direction -/~ points towards the Laue line. 
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finite but small gaps. Since the coupling between 
first-order modes becomes important near the cross- 
ing, the normal modes in this region have elliptical 
polarization varying with the angle of incidence, and 
a more careful analysis is needed to obtain accurate 
fields and intensities. In particular, the polarization 
composition of reflected intensities from unpolarized 
sources becomes very complex around x = - 1 ,  and 
simple conceptual interpretations of three-beam 
effects using plane polarized modes and based on 
unpolarized incident radiation become inadequate. 

As the details of  the various crossings, such as in 
Fig. 6, depend intricately on the parameters of every 
specific three-beam case, it is unlikely that next-order 
perturbation solutions can be cast in the same uni- 
versal form as the solutions discussed here. 

In any case, since higher-order effects become 
important only in the region Ixl 1, they in no way 
obscure the major asymmetries at the heart of the 
first-order solutions that should be observable under 
good experimental conditions at much larger x. 

This work was partly supported by Joint Services 
Electronics Program Contract No. F49620-82-C-0084. 
We also thank the referee for calling our attention to 
the paper by Watanabe et al. 
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Abstract 

The asymptotic distribution of ah is calculated via 
the distribution of the resultant of complex random 
vectors whose phase values are distributed according 
to Von Mises distributions. The statistical results 
suggest that the phase of the resultant, say Oh, is 

0108-7673/84/040389-'06501.50 

distributed around the phase ~Oh, approximately 
according to a Von Mises distribution. 

Introduction 

When several pairs of  phases ~0k., ~0h-kj are known, 
the conditional probability distrigution of the phase 
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